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Abstract

We study refinements between spectral resolutions in an arbitrary II1 factor
M and obtain diffuse (maximal) refinements of spectral resolutions. We con-
struct models of operators with respect to diffuse spectral resolutions. As an
application we obtain new characterizations of sub-majorization and spectral
preorder between positive operators in M and new versions of some known
inequalities involving these preorders.
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1 Introduction

The study of the norm closure of unitary orbits of self-adjoint operators in von
Neumann algebras is a well established area of research. Some of the early results
on this subject go back to the work of Weyl and von Neumann in the type I factor
case. Kamei, in his development of majorization between operators in II1 factors,
obtained an interesting characterization of the norm closure of the unitary orbit of
a positive operator in terms of its singular values. Recently, Arveson and Kadison
have described these sets for self-adjoint operators in terms of spectral distributions
[4] in the II1 factor and Sherman [17] has obtained interesting descriptions of several
closures of unitary orbits in von Neumann algebras under weak restrictions (see the
introduction of [17] for a detailed account on the history of these problems and
recent references). It turns out that even in the general setting of [17], the spectral
data of operators play a fundamental role in these investigations.

There are other notions closely related to unitary orbits, that are defined in terms
of spectral data, such as majorization, sub-majorization and spectral dominance; the
study of these notions has been considered in several research works like the papers
of Kamei [16] and Hiai [9, 10], Hiai and Nakamura [11, 12] and the more recent
papers of Kadison [13, 14, 15] and of Arveson and Kadison [4]. In this context one
usually tries to describe operators in some set associated with (the norm closure of)

UM(b) := {u∗bu : u ∈M is a unitary operator}
∗Supported in part by Consejo Nacional de Investigaciones Cient́ıficas y Técnicas of Argentina
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where M is a semifinite von Neumann algebra with faithful semifinite trace τ and
b ∈M is a self-adjoint operator. For example, it is well known [16] that ifM is a II1

factor then a ∈ conv(UM(b)) if and only if a is majorized by b, which is a spectral
relation. In this case the spectral data of a may be more complex (disordered) than
that of b. This makes things difficult when trying to recover a as an element of
conv(UM(b)) whenever we know that a is majorized by b. In order to overcome a
similar difficulty, in [2] we considered an “diffuse” refinement of the (joint) spectral
measure of an ordered n-tuple of mutually commuting self-adjoint elements of a II1

factor M.
In this work we consider a related construction to that obtained in [2] that,

roughly speaking, allows us to represent every positive operator a ∈ M+ as Borel
functional calculus (by an increasing left-continuous function) of a positive operator
a′ ∈ M with maximal disordered spectral resolution (with respect to a preorder
called refinement that we shall introduce). Moreover, the operator a′ ∈ M+ has
the following property: any positive operator b ∈ M+ is, up to approximately uni-
tary equivalence, Borel functional calculus of a′ (by an increasing left-continuous
function). These constructions are what we call diffuse refinements of spectral res-
olutions and modelling of operators. We also consider some relations between these
constructions and maximal abelian subalgebras ofM. The idea of considering max-
imal (diffuse) refinements of spectral resolutions and of constructing some models
of operators in finite factors has already been considered in [11, 12] although the
notion of refinement introduced here has not. In this work we attempt a brief but
systematic treatment of these concepts.

Our results are related to Kadison’s study of Schur-type inequalities [15] and
Arveson-Kadison’s study of closed unitary orbits in II1 factors [4]. Indeed our tech-
niques provide alternative proofs to some of their results. Moreover, our refinements
and modelling techniques are the basis for a version of the Schur-Horn type theorem
in II1 factors in [3].

As an application of these constructions we present characterizations of the sets

{c ∈M : 0 ≤ c ≤ d ∈ UM(a)}

and
{c ∈M : 0 ≤ c ≤ d ∈ conv(UM(a))}

in terms of spectral data. These characterizations are then applied to some recent
spectral inequalities obtained in [1, 5, 7].

The paper is organized as follows. In section 2 we recall some definitions and facts
regarding spectral relations (spectral preorder, majorization and sub-majorization).
In section 3 we present our results on refinements of bounded right spectral resolu-
tions in II1 factors. In section 4 we consider the modelling of operators and use this
construction to study spectral dominance and sub-majorization.

2 Preliminaries

Let B(H) be the algebra of bounded operators on a Hilbert spaceH. In what follows,
the pair (M, τ) shall denote a semifinite von Neumann algebra and a faithful normal
semifinite (f.n.s.) trace on M. In particular, if M is a finite factor then τ denotes
the unique f.n.s. trace such that τ(1) = 1. The real space of self-adjoint operators in
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M is denoted byMsa, the cone of positive operators byM+ and the unitary group
by UM. If a ∈ Msa then P a(∆) denotes the spectral projection of a corresponding
to the measurable set ∆ ⊆ R. For simplicity of notation we shall write P a(α, β)
(instead of P a((α, β))) for a real interval (α, β) ⊆ R. P(M) ⊆ Msa denotes the
lattice of orthogonal projections in M endowed with the strong operator topology.
For a ∈ M, R(a) denotes its range and P

R(a)
∈ P(M) the orthogonal projection

onto the closure of its range. By a decreasing function (resp. increasing) we mean
a non-increasing function (resp. non-decreasing). If (X, ν) is a measure space then
L∞(ν)+ denotes the cone of ν-essentially bounded nonnegative functions on X. The
set of nonnegative numbers is denoted by R+

0 .

2.1 Singular values, spectral preorder and (sub) majorization

The τ -singular values (or τ -singular numbers) [8] of x ∈ M are defined for each
t ∈ R+

0 by
µx(t) = inf{‖xe‖ : e ∈ P(M), τ(1− e) ≤ t}. (1)

The function µx : R+
0 → R+

0 is decreasing and right-continuous. If x, y ∈M then

|µx(t)− µy(t)| ≤ ‖x− y‖ (2)

which shows a continuous dependence of the singular values on the operator norm.
If a ∈M+, we have

µa(t) = min{s ∈ R+
0 : τ(P a(s,∞)) ≤ t}.

This last characterization of the singular values of positive operators shows the
following property: if a, b ∈M+ are such that τ(P a(s,∞)) = τ(P b(s,∞)) for every
s ∈ R+

0 then µa = µb. On the other hand, from (1) we see that µa = µuau∗ for
every unitary operator u ∈ UM. Moreover, from this last fact and the continuous
dependence (2) we see that µa = µb, whenever b ∈ UM(a), where UM(a) denotes
the norm closure of the unitary orbit

UM(a) = {uau∗ : u ∈ UM}.

Kamei proved [16] a converse of this fact when (M, τ) is a finite factor. We sum-
marize these remarks in the following proposition.

Proposition 2.1. Let (M, τ) be a semifinite von Neumann algebra and let a, b ∈
M+.

1. If b ∈ UM(a), then µa = µb.

2. (Kamei [16]) Assume further that (M, τ) is a finite factor and µa = µb. Then
b ∈ UM(a).

Next we recall the definitions of three different preorders that we shall consider
in the sequel. If a, b ∈ M+ we say that b spectrally dominates a, and write a - b,
if any of the following (equivalent) statements holds:

a) µa(t) ≤ µb(t), for all t ≥ 0.

b) τ(P a(t,∞)) ≤ τ(P b(t,∞)), for all t ≥ 0.
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If in addition (M, τ) is a semifinite factor

c) P a(t,∞) - P b(t,∞) in the Murray-von Neumann’s sense.

We say that a is sub-majorized by b, and write a ≺w b, if∫ s

0
µa(t) dt ≤

∫ s

0
µb(t) dt, for every s ≥ 0.

If in addition τ(a) = τ(b) then we say that a is majorized by b and write a ≺ b. It
is well known that a ≤ b⇒ a - b⇒ a ≺w b.

We shall need the following result due to Hiai and Nakamura [12], concerning
functions in a finite measure space (X, ν). In this case, a function g ∈ L∞(ν) is
considered as an operator in the finite von Neumann algebra (L∞(ν), ϕ) and singular
values are defined with respect to the normal faithful finite trace ϕ induced by ν,
i.e.

ϕ(g) :=
∫
X
g dν, g ∈ L∞(ν). (3)

Proposition 2.2. Let (X, ν) be a probability space and let f, g ∈ L∞(ν)+. Then
f ≺w g if and only if there exists h ∈ L∞(ν)+ such that f ≤ h ≺ g.

Remark 2.3. If (M, τ) is a finite factor and a ∈ M+, then let ν be the regular
Borel probability measure given by ν(∆) = τ(P a(∆)). For every g ∈ L∞(ν)+ let

g(a) =
∫
σ(a)

g dP a ∈M+

and note that µg(a) = µg. As a consequence we get that τ(g(a)) = ϕ(g), where
ϕ is given by 3. Thus, if h, g ∈ L∞(ν)+, then h(a) - g(a) (resp. h(a) ≺ g(a),
h(a) ≺w g(a)) in M if and only if h - g (resp. h ≺ g, h ≺w g) in L∞(ν).

3 Refinements of spectral resolutions

Let I = [α, β] ⊆ R be a closed interval, and recall that P(M) denotes the lattice
of orthogonal projections in M endowed with the strong operator topology. If
p ∈ P(M), we say that a map E : I → P(M) is a bounded right spectral resolution
of p (abbreviated “brsr of p”) if E is decreasing and right-continuous, E(β) = 0 and
E(α) = p. If p = 1 then this notion agrees with the usual definition of brsr in M.
For example, any a ∈M+ induces a brsr of p = P

R(a)
, by

E(λ) = P a(λ, ∞), λ ∈ [0, ‖a‖]. (4)

Given E : I → P(M) a brsr (of E(α)) then, we identify E with the family {Eλ}λ∈I ,
where Eλ = E(λ) for every λ ∈ I. If the set I is clear from the context, we simply
write {Eλ}.

If E : [α, β] → P(M) is a brsr, we say that λ0 ∈ (α, β] is an atom for {Eλ}, if
the resolution is not continuous at λ0; if p 6= 1 then α is considered as an atom. The
set of atoms of {Eλ} is denoted by At({Eλ}). We say that {Eλ} is a diffuse brsr if
the set At({Eλ}) is empty. It is clear that {Eλ} is diffuse if and only if E(α) = 1
and E is a continuous function (recall that P(M) is endowed with the SOT). We
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say that a positive operator a ∈ M+ has continuous distribution if the resolution
induced by a (see (4)) is diffuse. Therefore, a ∈ M+ has continuous distribution if
and only if P

R(a)
= 1 and P a({x}) = 0 for every x ∈ R.

It is well known that given a brsr {Eλ}λ∈I in M then there exists a unique
spectral measure F on I with values in P(M) such that Eλ = F ((λ,∞)) for every
λ ∈ I. If h : I → C is a uniformly bounded measurable function then we use the
following notation ∫

I
h(λ) dEλ :=

∫
I
h dF. (5)

Definition 3.1. Let {Eλ}λ∈I and {E′λ}λ∈I′ be brsr’s, where I = [α, β] and I ′ =
[α′, β′]. We say that {E′λ} refines {Eλ} if there exists f : I → I ′ such that

(a) f is increasing, right-continuous and f(β) = β′;

(b) Eλ = E′f(λ) for every λ ∈ I.

We say that {E′λ} strongly refines {Eλ} if f also satisfies

(c) f(λ) ≥ λ for every λ ∈ I, and

(d) f(λ)− f(µ) ≥ λ− µ, for every λ > µ ∈ I.

If {E′λ} (strongly) refines {Eλ} we also say that ({E′λ}, f) is a (strong) refinement
of {Eλ}, where f is as in Definition 3.1. It is easy to see that refinement is a preorder
relation.

The following, which is the main result of this section, is related with the re-
finement of spectral measures of separable abelian C∗-subalgebras in a II1 factor
developed in [2].

Theorem 3.2. Let (M, τ) be a II1 factor and let a ∈ M+. Then there exists
a′ ∈ M+ with continuous distribution and such that the brsr induced by a′ strongly
refines the brsr induced by a. Further, if a ∈ A+, where A is a masa in M, then a′

can be selected from A.

In what follows we state some lemmas and use them to prove Theorem 3.2 at
the end of this section. In the rest of the paper, the pair (M, τ) will always denote
a II1 factor. Let I = [α, β] and let {Eλ}λ∈I be a brsr of a projection p ∈ P(M). If
λ0 ∈ (α, β] is an atom for {Eλ}, then

lim
λ→λ−0

Eλ = Eλ0 + p(λ0), p(λ0) 6= 0. (6)

In this case p(λ0) ∈ P(M) is the jump projection of {Eλ} at λ0. If p 6= 1 then α ∈
At({Eλ}) and the jump projection at α is by definition p(α) = 1− p. Note that the
set of atoms At({Eλ}) is countable. Indeed, if λ0, λ1 ∈ At({Eλ}) and λ0 6= λ1, then
it is easy to see that p(λ0) p(λ1) = 0, i.e. p(λ0) and p(λ1) are orthogonal projections.
Therefore

J ({Eλ}) :=
∑

λ∈At({Eλ})

τ(p(λ)) = τ

 ∑
λ∈At({Eλ})

p(λ)

 ≤ 1 (7)

and this implies that At({Eλ}) is countable. The real number J ({Eλ}) is called the
total jump of the resolution.
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Lemma 3.3. Let {Eλ}λ∈I , {E′λ}λ∈I′ be brsr’s in M. If {E′λ} refines {Eλ} then
J ({Eλ}) ≥ J ({E′λ}).

Proof. Let λ0 ∈ At({E′λ}) and consider µ0 = min{µ ∈ I : f(µ) ≥ λ0} which is well
defined by (a) in Definition 3.1. Then by definition of µ0, f(µ0) ≥ λ0 and f(µ) < λ0

if µ < µ0. So

lim
µ→µ−0

Eµ − Eµ0 = lim
µ→µ−0

E′f(µ) − E
′
f(µ0) ≥ lim

λ→λ−0
E′λ − E′λ0

6= 0,

since λ0 is an atom of {E′λ}. Therefore µ0 ∈ I is an atom of the resolution {Eλ}
and we have

lim
µ→µ−0

τ(Eµ) = lim
µ→µ−0

τ(E′f(µ)) > τ(E′λ0
) ≥ τ(E′f(µ0)) = τ(Eµ0), (8)

since f(µ)→ λ−1 ≤ λ0 when µ→ µ−0 and λ0 ∈ At({E′λ}). We consider the following
relation in At({E′λ}): if λ1, λ2 ∈ At({E′λ}) then λ1 ≈ λ2 if and only if there exists
µ0 ∈ At({Eλ}) such that

τ(E′λ1
), τ(E′λ2

) ∈

[
τ(Eµ0), lim

µ→µ−0
τ(Eµ)

)
. (9)

The inequality (8) shows that this relation is reflexive. On the other hand it is
clearly symmetric. Note that if µ1 < µ2 then limµ→µ−2

τ(Eµ) ≤ τ(Eµ1) and

[τ(Eµ2), lim
µ→µ−2

τ(Eµ)) ∩ [τ(Eµ1), lim
µ→µ−1

τ(Eµ)) = ∅.

So, if λ1 ≈ λ2 then there exists a unique µ0 ∈ At({Eλ}) such that (9) holds,
so in particular ≈ is an equivalence relation. Therefore, for any equivalence class
Q ∈ Π = At({E′λ})/ ≈, there exists a unique atom µQ ∈ At({Eλ}) such that

τ(Eλ) ∈ [τ(EµQ), lim
µ→µ−Q

τ(Eµ)) for all λ ∈ Q.

Let λ1, . . . , λn ∈ Q with λ1 < . . . < λn. Then, if p′(λi) is the jump projection of the
resolution {E′λ} at λi and p(µQ) is the jump projection of the resolution {Eλ} at
µQ, we have

n∑
i=1

τ(p′(λi)) =
n∑
i=1

( lim
λ→λ−i

τ(E′λ)− τ(E′λi)) ≤ lim
λ→λ−1

τ(E′λ)− τ(E′λn)

≤ lim
µ→µ−Q

τ(E′f(µ))− τ(E′f(µQ)) = τ(p(µQ))

Taking limit over n if necessary, we get
∑

λ∈Q τ(p′(λ)) ≤ τ(p(µQ)). Therefore

J ({E′λ}) =
∑
Q∈Π

∑
λ∈Q

τ(p′(λ)) ≤
∑
Q∈Π

τ(p(µQ)) ≤ J ({Eλ})

where the rearrangement is valid since we are considering series of positive terms.

We introduce the following notation in order to state Lemma 3.5.
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Definition 3.4. If {αk}k∈N ∈ `1(R+) we say that a sequence ({Ekλ}λ∈Ik)k∈N of
brsr’s in M is {αk}k∈N-compatible if the following conditions hold:

1. ∃α, β ∈ R+
0 such that Ik = [α, β +

∑k
i=1 αi] for every k ∈ N.

2. ({Ek+1
λ }, fk) is a strong refinement of {Ekλ} for every k ∈ N.

3. fk(λ)− λ ≤ αk, for every λ ∈ Ik and for every k ∈ N.

Lemma 3.5. Let {αk}k∈N ∈ `1(R+) and ({Ekλ}λ∈Ik)k∈N be {αk}k∈N-compatible.
Then there exists a brsr {Eλ}λ∈I in M such that {Eλ} strongly refines {Ekλ}, for
every k ∈ N. Moreover, if A ⊆ M is a masa and {Ekλ} is in A for each k ∈ N, we
can choose {Eλ} also in A.

Proof. For simplicity, we shall assume that α = 0. The general case follows from this
by reparametrization. Let I = [0, β+

∑∞
i=1 αi] and for every k ∈ N let fk : Ik → Ik+1

be as in Definition 3.4. Note that, since fk(λ) ≥ λ for λ ∈ Ik (condition (c) in 3.1),

Ekλ = Ek+1
fk(λ) ≤ E

k+1
λ .

Therefore, for each λ ∈ I the sequence {Ekλ}k∈N is increasing, where we set Ekλ = 0
if λ /∈ Ik. Let us define

Eλ =
∨
k∈N

Ekλ = lim
k→∞

Ekλ ∈ P(M), λ ∈ I (10)

where the limit is in the strong operator topology. Note that, if A ⊆ M is a masa
and Ekλ ∈ P(A) for every k ∈ N, then Eλ ∈ A. To see that {Eλ}λ∈I is a brsr note
first that Eλ0 ≥ Eλ if λ0 ≤ λ. Thus ∃ limλ→λ+

0
Eλ ≤ Eλ0 . If {λn} ⊆ I is a decreasing

sequence such that limn→∞ λn = λ0 then

τ( lim
n→∞

Eλn) = lim
n→∞

τ(Eλn) = lim
n→∞

lim
k→∞

τ(Ekλn)

= lim
k→∞

lim
n→∞

τ(Ekλn) = τ(
∨
k∈N

Ekλ0
) = τ(Eλ0)

where the change of order of the iterated limits is valid since the double sequence
{τ(Ekλn)}n,k is positive, bounded and increasing in each variable. Therefore limλ→λ+

0
Eλ =

Eλ0 and {Eλ}λ∈I is a brsr.
Fix k ∈ N and consider the sequence {un : Ik → Ik+n}n∈N of increasing right-

continuous functions, given inductively by u1 = fk and un = fk+n−1◦un−1 for n ≥ 2.
Then, it is easy to see that

1. Ekλ = Ek+n
un(λ),

2. un+1 ≥ un, ‖un+1 − un‖∞ ≤ αn+k,

3. un(λ)− un(µ) ≥ λ− µ if λ, µ ∈ Ik and λ ≥ µ.

Let hk : Ik → I be the uniform limit of the increasing sequence {un}. Then hk
is increasing right-continuous, hk(λ) ≥ λ (u1 = fk) and hk(λ) − hk(µ) ≥ λ − µ if
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λ > µ ∈ Ik. Let λ0 ∈ [0, β +
∑k

i=1 αi) and note that Ekλ0
= Ek+n

un(λ0) ≥ Ek+n
hk(λ0), since

un(λ) ≤ hk(λ). Therefore

Ekλ0
≥ lim

n→∞
Ek+n
hk(λ0) = Ehk(λ0). (11)

To see that equality holds in (11) we consider

λn := min{λ ∈ Ik : un(λ) ≥ hk(λ0)}.

By definition we have un(β+
∑k

i=1 αi) = β+
∑k+n

i=1 αi so λn is well defined. Further,
λn ≥ λn+1 ≥ λ0, since {un} is an increasing sequence, and λn → λ+

0 . Indeed, if
λ > λ0 and λ − λ0 = ε then hk(λ) ≥ hk(λ0) + ε and there exists n ∈ N such that
un(λ) > hk(λ0), which implies that λ0 ≤ λn ≤ λ. Finally, we have

Ehk(λ0) ≥ Eun(λn) ≥ Ek+n
un(λn) = Ekλn , ∀n ∈ N

which implies that Ehk(λ0) ≥ limn→∞E
k
λn

= Ekλ0
.

Lemma 3.6. Let {Eλ}λ∈[α,β] be a brsr in M. If λ0 ∈ At({Eλ}), then there exists a
strong refinement ({E′}λ∈I′ , f) of {Eλ}, where I ′ = [α, β + τ(p(λ0))] such that

1. J ({E′λ}) = J ({E′λ})− τ(p(λ0)).

2. f(λ)− λ ≤ τ(p(λ0)) for every λ ∈ I.

3. At({E′λ}) = f(At({Eλ} \ λ0)).

Moreover, if A ⊆ M is a masa and {Eλ} is a brsr in A then we can choose {E′λ}
also in A.

Proof. For simplicity, we assume that I = [0, β] (α = 0). The general case fol-
lows from this by reparametrization. Let λ0 ∈ At({Eλ}), p0 = p(λ0) be the jump
projection at λ0 and α0 = τ(p0).

It is well known [4, 15] that there exists {Uλ}λ∈[0,α0] a brsr of p0 inM such that

τ(Uλ) =
τ(p0)(α0 − λ)

α0
, λ ∈ [0, α0]. (12)

Moreover, if A ⊆M is a masa and p0 ∈ P(A) then we can choose {Uλ} to be in A.
Let

E′λ =


Eλ if 0 ≤ λ < λ0

Eλ0 + Uλ−λ0 if λ0 ≤ λ ≤ λ0 + α0

Eλ−α0 if λ0 + α0 < λ ≤ α0 + β.

It is easy to see that {E′λ}λ∈I′ , where I ′ = [0, β+α0], is a brsr. Note that if {Eλ} is
in a masa A ⊆ M then p0 ∈ A and we can choose {Uλ} in A, so that {E′λ} is also
in A. The increasing, right-continuous function f : I → I ′ given by

f(λ) =
{
λ if 0 ≤ λ < λ0

λ+ α0 if λ0 ≤ λ ≤ β + α0
(13)
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satisfies Eλ = E′f(λ), λ ∈ [0, β]. Moreover At({E′λ}) = f(At({Eλ}) \ {λ0}) and
p(λ) = p ′(f(λ)) for every λ ∈ At({Eλ})\{λ0}, where p ′(f(λ)) is the jump projection
of {E′λ} at f(λ) ∈ At({E′λ}). Therefore

J ({E′λ}) =
∑

λ∈At({Eλ})\{λ0}

τ(p(f(λ))) = J ({Eλ})− τ(p0).

The rest of the properties of f follow directly from (13).

Proof of Theorem 3.2. Let a ∈ M+ and consider the brsr induced by a (see (4)).
Set β = ‖a‖, let I = [0, β] and let {λn}n∈N be an enumeration of the set At({Eλ}),
where N ⊆ N is an initial segment, and let αn = τ(p(λn)) > 0. By (7) we have∑

n∈N αn ≤ 1. Let I1 := I, {E1
λ} := {Eλ} and let ({E2

λ}λ∈I2 , f1) be the strong
refinement obtained from {E1

λ}λ∈I1 and the atom λ1 as in Lemma 3.6. Recall that
in this case I2 = [0, β + τ(p1)] and set g2 := f1 : I1 → I2.

We proceed inductively: assume that for 1 ≤ t ≤ k − 1 we have brsr’s {Etλ}λ∈It ,
where It = [0, β +

∑t−1
j=1 αj ] and for 1 ≤ i ≤ k − 2 increasing right-continuous

functions fi : Ii → Ii+1 such that ({Ei+1
λ }, fi) strongly refines {Eiλ} and such that

fi(λ)−λ ≤ αi for λ ∈ Ii. Assume further that for 2 ≤ l ≤ k− 1 there exist injective
functions gl : I → Il such that

At({E l
λ}) = gl(At({Eλ}) \ {λ1, . . . , λl−1})

and

J ({Elλ}) = J ({Eλ})−
l−1∑
j=1

αj .

Apply Lemma 3.6 to the brsr {Ek−1
λ }λ∈Ik−1

and the atom gk−1(λk−1). Then we
obtain a brsr {Ekλ}λ∈Ik , Ik = [0, β +

∑k−1
j=1 αj ], and an increasing right-continuous

function fk−1 : Ik−1 → Ik such that ({Ekλ}, fk−1) is a strong refinement of {Ek−1
λ };

in this case we have fk−1(λ)− λ ≤ αk−1. If we let gk = fk−1 ◦ gk−1 : I → Ik then gk
is injective and such that

At({Ekλ}) = fk−1(At({Ek−1
λ }) \ {gk−1(λk−1)})

= gk(At({Eλ}) \ {λ1, . . . , λk−1}).

Moreover, J ({Ekλ}) = J ({Ek−1
λ })− αk−1 = J ({Eλ})−

∑k−1
i=1 αi.

We obtain in this way a sequence {Ekλ}λ∈Ik of brsr’s where Ik = [0, β+
∑k−1

j=1 αj ],
and increasing right-continuous functions {fk : Ik → Ik+1} for k ∈ N as in the
hypothesis of Lemma 3.5. Thus, there exists a brsr {E′λ}λ∈I′ such that for every
k ∈ N {E′λ} is a strong refinement of {Ekλ}. In particular, {E′λ} is a strong refinement
of {Eλ} = {E1

λ}. By Lemma 3.3, J ({E′λ}) ≤ J ({Ekλ}) for every k ∈ N and therefore
J ({E′λ}) = 0, i.e. {E′λ} is diffuse.

Note that if a ∈ A+ for some masa A ⊆M then {Eλ} is a brsr in A; by Lemma
3.6 we can construct each {Ekλ} also in A and so, by Lemma 3.5 then {E′λ} is in A.
Finally if we let a′ =

∫
I′ λ dE

′
λ (see (5)) then a′ ∈M+ has the desired properties.
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4 Modelling of operators and applications

4.1 Modelling of operators

We begin with the following elementary lemmas about functions that we shall need
in the sequel.

Lemma 4.1. Let I = [α, β], J = [α′, β′] ⊆ R be closed intervals, g : J → [0, 1] a
decreasing right-continuous function and let h : I → [0, 1] be a decreasing continuous
function such that h(α) ≥ g(α′) and h(β) ≤ g(β′). If we let g̃ : J → I be given by

g̃(x) = max{t ∈ I : g(x) = h(t)}

then g̃ is an increasing right-continuous function and g = h ◦ g̃.

Lemma 4.2. Let I = [α, β], J = [α′, β′] ⊆ R and let f : J → I be an increasing
right-continuous function such that f(β′) = β. If f † : I → J is the function given
by

f †(λ) = min{t ∈ J : λ ≤ f(t)}

then it is increasing, left-continuous and such that for every t ∈ J

{λ ∈ I : λ > f(t)} = {λ ∈ I : f †(λ) > t}. (14)

If f is strictly increasing then f † is continuous. Moreover, if J̃ := [γ, δ] ⊆ J and
g : J̃ → I is increasing and right-continuous, g(δ) = β′ and f(t) ≥ g(t) for every
t ∈ J̃ , then g† ≥ f †.

Lemma 4.3. Let I = [α, β], J = [α′, β′] ⊆ R and let f : I → J be an increasing
left-continuous function such that f(α) = α′. If f† : J → I is the function given by

f†(λ) = max{t ∈ I : λ ≥ f(t)}

then it is increasing, right-continuous and such that for every t ∈ I

{λ ∈ J : λ < f(t)} = {λ ∈ J : f†(λ) < t}. (15)

The following theorem develops the modelling of positive operators and relates
it with the refinement between the spectral resolutions induced by these operators.

Theorem 4.4. Let (M, τ) be a II1 factor, let a ∈M+ with continuous distribution
and let I = [0, ‖a‖]. Then

1. If b ∈ M+, there exists a nonnegative increasing left-continuous function hb
on I such that if b̃ = hb(a) then µb = µb̃.

2. The brsr induced by a refines the brsr induced by b if and only if b̃ = b.
Moreover, if the brsr induced by a strongly refines the brsr induced by b then
hb is continuous.

3. If c+ ∈ M then c - b (resp c ≺w b, c ≺ b) if and only if hc(a) ≤ hb(a) (resp.
hc(a) ≺w hb(a), hc(a) ≺ hb(a)).
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Proof. Let a ∈ M+ with continuous distribution, let I = [0, ‖a‖] and let h : I →
[0, 1] be the decreasing continuous function defined by h(t) = τ(P a(t,∞)). Note
that h(‖a‖) = 0 and, since a has continuous distribution, h(0) = 1.

Let b ∈M+, J = [0, ‖b‖] and let g : J → [0, 1] be the decreasing right-continuous
function defined by g(s) = τ(P b(s,∞)). By Lemma 4.1, there exists an increasing
right-continuous function g̃ : J → I, such that g = h ◦ g̃, i.e.

τ(P b(s,∞)) = τ(P a(g̃(s),∞)), s ∈ J. (16)

By Lemma 4.2 there exists an increasing (and therefore uniformly bounded measur-
able) left-continuous function hb := g̃† : I → J such that

{λ ∈ I : hb(λ) > s} = {λ ∈ I : λ > g̃(s)}, s ∈ J. (17)

Let b̃ = hb(a) and note that τ(P b̃(s,∞)) = τ(P b(s,∞)), which follows from (16)
and (17). Therefore, b and b̃ have the same singular values.

To prove 2. assume that the brsr induced by b ∈ M+ is refined by the brsr
induced by a. Let b̃ = hb(a) and note that P b̃(s,∞) = P a(g̃(s),∞) and by
hypothesis P b(s,∞) = P a(f(s),∞) for some increasing right-continuous function
f : J → I. Then P b̃(s,∞) ≤ P b(s,∞) or P b(s,∞) ≤ P b̃(s,∞) and by (17) we have
τ(P b(s,∞)) = τ(P b̃(s,∞)) so P b(s,∞) = P b̃(s,∞), s ∈ J. Therefore b = b̃. On the
other hand, if b = j(a) for any increasing left-continuous function j : I → J , then
by Lemma 4.3 there exists an increasing right-continuous function f := j† : J → I
such that

P b(λ,∞) = P a({t ∈ I : λ < j(t)})
= P a({t ∈ I : f(λ) < t}) = P a(f(λ),∞),

so the brsr induced by a refines the brsr induced by b. Finally assume that the brsr
induced by a strongly refines the brsr induced by b. Then, by (d) in Definition 3.1
f is strictly increasing and therefore, by Lemma 4.2 hb = f † is continuous.

To prove 3. assume that c ∈M+ is such that τ(P c(s,∞)) ≤ τ(P b(s,∞)) for all
s ≥ 0 and therefore ‖c‖ ≤ ‖b‖. As before, let k : [0, ‖c‖] → [0, 1] be the function
given by k(s) = τ(P c(s,∞)), k̃ obtained from k as in Lemma 4.1, and hc = k̃†

obtained from k̃ as in Lemma 4.2. Then, g̃(t) ≤ k̃(t) for every t ∈ [0, ‖c‖] and, by
Lemma 4.2, we conclude that hc = k̃† ≤ g̃† = hb. From this it follows that c̃ ≤ b̃,
where b̃ = hb(a), c̃ = hc(a). The rest of the statement is a consequence of the fact
that µb = µb̃ and µc = µc̃.

We say that c ∈ M+ is a model of b ∈ M+ with respect to a ∈ M+, if there
exists a nonnegative, left-continuous and increasing function h such that c = h(a)
and µc = µb. Thus, with the notations of the proof of Theorem 4.4, we see that
b̃ ∈ M+ is a model of b ∈ M+ with respect to a. As an immediate consequence
of 2. in Proposition 2.1, we conclude that the model b̃ is approximately unitarily
equivalent to b in M.

Remark 4.5. In [15] Kadison solved the following problem in a II1 factor (M, τ):
given a masa A ⊆M, a ∈ Asa and t ∈ [0, 1] find a projection p ∈ A and λ ∈ R such
that τ(p) = t, ap ≥ λp and a(I−p) ≤ λ(I−p). Note that Theorems 3.2 and 4.4 give
an alternative proof of this statement in the case a ∈ A+. Indeed, let a′ ∈ A+ be as
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in Theorem 3.2 and ha be as in Theorem 4.4. Then, if we let p = P a
′
(α,∞) with

τ(p) = t (such α always exists since a′ has continuous distribution) and λ = ha(α)
then p and λ have the desired properties, since ha is an increasing function.

As a final comment let us note that a variation of the proof of Theorem 4.4 implies
that if a ∈M+ has continuous distribution and if ν is any regular Borel probability
measure of compact support in the real line then, there exists h : [0, ‖a‖]→ R such
that ν(∆) = τ(P h(a)(∆)). Indeed, we just have to replace the function τ(P b(λ,∞))
by ν((λ,∞)) in the proof of 2. In particular, if A ⊆ M is a masa and we consider
a ∈ A+ then this argument gives a different proof of Proposition 5.2 in [4].

4.2 Some applications of the modelling technique

The following application of Theorem 4.4 provides new characterizations of spectral
preorder and sub-majorization between positive operators in II1 factors. Note that
these re-formulations have an inequality-type form.

Theorem 4.6. Let (M, τ) be a II1 factor and let a, b ∈M+. Then

1. b spectrally dominates a if and only if

there exists c ∈ UM(b) with a ≤ c (18)

or, equivalently, if

there exists d ∈ UM(a) with d ≤ b. (19)

Moreover, we can assume that a and c commute and that b and d commute.

2. b sub-majorizes a if and only if there exists c ∈M+ such that

a ≤ c ≺ b. (20)

Moreover, we can assume that a and c commute.

Proof. Recall that for positive operators a, b ∈M+, a ≤ b implies a - b. Thus, the
existence of a sequence of unitary operators satisfying (18) or (19) implies spectral
domination. Analogously, the existence of an operator satisfying (20) implies sub-
majorization. Next show that the reverse implications are also true.

To prove the first part of 1. let a, b ∈ M+ such that a ≺ b. By Theorem 3.2
there exists a′ ∈M+ with continuous distribution such that the brsr induced by a′

(strongly) refines the brsr induced by a. By Theorem 4.4 there exists an increasing
left-continuous function hb such that, if b̃ = hb(a′), µb = µb̃. By 2. in Proposition
2.1, this implies that b̃ ∈ UM(b). Since by hypothesis µa ≤ µb, by 2. and 3. in
Theorem 4.4 we have b̃ = hb(a′) ≥ ha(a′) = a. Thus, we obtain (18) with c = b̃.
The proof of the second part follows a similar path, considering the model of a with
respect to a refinement of b.

To prove 2., let a and a′ be as in the first part of the proof. Let b ∈M+ be such
that a ≺w b and let ν denote the regular Borel probability measure on I ′ = [0, ‖a′‖]
given by ν(∆) = τ(P a

′
(∆)). Then, if ha, hb are as in Theorem 4.4 we have (see

Remark 2.3) that ha ≺w hb in L∞(ν). Therefore, by Proposition 2.2 there exists
h ∈ L∞(ν) such that ha ≤ h ≺ hb. If we let c = h(a′) then a ≤ c ≺ b by construction,
since a = ha(a′).
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The first part of 1. in Theorem 4.6 gives a partial affirmative solution to the
following problem posed in [6, 7]: given a (M, τ) a II1 factor and a, b ∈ M+

such that a - b, is there any automorphism of M, Θ, such that Θ(b) ≥ a? Our
considerations above lead to a sequence of τ -preserving automorphisms (Adun)n∈N,
where un ∈ UM, such that in the limit the above statement is true.

Corollary 4.7. Let a, b ∈M+. Then the following statements are equivalent:

1. b spectrally dominates a.

2. There exists a brsr {Eλ}λ∈I , where I = [0, ‖a‖] such that τ(Eλ) = τ(P a(λ,∞))
for every λ ∈ I and

λEλ ≤ Eλ bEλ, ∀λ ≥ 0. (21)

Proof. Assume 1. and note that, by Theorem 4.6 there exists a sequence (vn)n ⊆ UM
such that limn→∞ ‖d − v∗navn‖ = 0 and d ≤ b for some d ∈ M+. Then τ(p(a)) =
τ(p(d)) for every polynomial p ∈ C[x] and, using monotone convergence, we have
τ(P a(λ,∞)) = τ(P d(λ,∞)), λ ≥ 0. Moreover,

λP d(λ,∞) ≤ P d(λ,∞) d ≤ P d(λ,∞) b P d(λ,∞).

Then, if we set Eλ = P d(λ,∞), {Eλ}λ∈[0, ‖a‖] is the desired brsr. Conversely, assume
that there exists a brsr {Eλ}λ∈[0,‖a‖] as in item 2. Given ε > 0, let bε = b + εI and
note that λEλ < EλbεEλ, so PEλ bε Eλ(λ,∞) = Eλ. In [8] Fack proved the following
interlacing-like inequality: for every orthogonal projection p ∈ M, p b p - b. Then
we have

τ(P a(λ,∞)) = τ(Eλ) = τ(PEλ bε Eλ(λ,∞)) ≤ τ(P bε(λ,∞)).

The inequality above shows that µa ≤ µbε for every ε > 0. The corollary is now a
consequence of the fact that limε→0+ µbε(t) = µb(t) for every t ≥ 0.

We end with some applications of our previous results. These are mostly re-
statements of some inequalities with respect to spectral preorder and sub-majorization
obtained in [1, 4, 5, 7], using Theorem 4.6.

Corollary 4.8. Let (M, τ) be a II1 factor.

1. (Young-type inequalities) Let x, y ∈ M and let p, q be conjugated indices.
Then there exist sequences (un)n∈N, (vn)n∈N ⊆ UM such that

|xy∗| ≤ lim
n→∞

u∗n(p−1|x|p + q−1|y|q)un

and
lim
n→∞

v∗n|xy∗|vn ≤ p−1|x|p + q−1|y|q

2. (Jensen-type inequalities) Let A be a unital C∗-algebra, Φ : A → M be a
positive unital map, a ∈ A+ and f : σ(a)→ R be a convex function.

(a) If f is increasing, there exist sequences (un)n∈N, (vn)n∈N ⊆ UM with

f(Φ(a)) ≤ lim
n→∞

u∗nΦ(f(a))un

and
lim
n→∞

v∗nf(Φ(a))vn ≤ Φ(f(a)).
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(b) If f is an arbitrary convex function, there exists c ∈M+ such that

f(Φ(a)) ≤ c ≺ Φ(f(a)).

Moreover, we can choose c so that it commutes with f(Φ(a)).

Proof. In [7], Farenick and Manjegani proved that if p, q, x, y are as above, then
|xy∗| - p−1|x|p+q−1|y|q. On the other hand, in [1] it was shown that if Φ, f, a are as
above then, f(Φ(a)) - φ(f(a)) if f is increasing and in general, f(Φ(a)) ≺w Φ(f(a))
for an arbitrary convex function f . The corollary follows from these facts and
Theorem 4.6.

The proofs of Theorem 4.6 and Corollary 4.7 show a possible interplay between
Theorems 3.2 and 4.4 to get an interesting tool to deal with problems regarding
spectral relations. As far as we know, the conclusions of Corollary 4.8 are not
possible using the previous literature.

Some of our results extend to certain classes of (unbounded) measurable opera-
tors affiliated with M. Also, note that there is still the problem of finding charac-
terizations of spectral order and sub-majorization similar to those in Theorem 4.6,
for general semifinite factors; these characterizations may depend on generalizations
of both Theorems 3.2 and 4.4. We shall investigate these matters elsewhere.
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